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Abstract. Data sets of very large graphs are now commonplace; the scale of
these graphs presents considerable difficulties for graph visualization methods.
The use of interactive techniques and large screens have been proposed as two
possible avenues to address these difficulties.This paper presents GION, a new
skeletal animation technique for interacting with large graphs on wall-sized dis-
plays. Our technique is based on a physical simulation, and aims to enhance the
users’ ability to efficiently interact with the graph visualization for exploratory
analysis. We conducted a user study to evaluate our technique against standard
operations available in most graph layout editors, and the study shows that the
new technique produces layouts with less stress, and fewer edge crossings. GION
is preferred by users, and requires significantly less mouse movement.

1 Introduction

Graphs provide a versatile model for data from a large variety of application domains,
including biology, finance, telecommunication, software engineering, and social sci-
ences. Graph visualization helps scientists and engineers to understand critical issues
in these domains. However, the depth of understanding depends on the quality of the
drawing. Automatic graph layout methods are developed for computational efficiency
and quality, i.e. readability. These methods however can only optimize a few criteria in
combination, and it is impossible to define a quality measure that allows to create opti-
mal layouts for all graphs, tasks, and observers. Moreover, the size of relevant data sets
for analysis has grown exponentially over the last years. For example, data from social
networks, biology, and finace continue to grow at a rate that is not accommodated by
current methodologies.

While some layout algorithms are capable of laying out graphs with hundreds of
thousands of nodes in a few seconds [4], data sizes from practice are still a challenge in
a number of ways:

– There is a trade-off between computational resources and layout quality. For exam-
ple, algebraic methods run quickly but in many cases give poor results [6], while
stress minimization [5] gives good quality layouts but is too slow for interactive
work on large graphs.



– Existing methods do not scale well visually. A standard screen with a few megapix-
els cannot faithfully display graphs of a few million edges.

– An underlying problem lies in the optimisation criteria for layout algorithms for
large graphs. For small scale graphs, criteria such as the number of edge cross-
ings have been successfully used and validated [13, 14]. However, all commonly
used algorithms for large graph layout ignore these criteria and generally use an
optimisation criterion based on a notion of energy or stress [4].

– Readable large graphs might not be sufficient for understanding, as requirements
differ based on the application and the task at hand. Moreover, the user can interac-
tively explore different regions of the graph which are not known in advance, e.g.
to compare or investigate the local structures, while keeping their global context.

This paper makes the contribution of a new interaction technique, GION, for ma-
nipulating layouts of large graphs. GION is novel by employing a physics engine to
simplify the process of interacting with large graphs, treating the graph as a set of con-
nected rigid bodies. The physics engine provides smooth animation for the user while
interactively laying out the graph, and this animation improves the understanding for
the user of the graphs underlying structure. When the user moves a cluster, the con-
nected clusters are also moved, as if they were connected in a chain. Our contribution
is validated with a user study conducted to evaluate the effectiveness of the technique
in a graph untangling task.

The remainder of this paper is structured as follows. Section 2 describes previous
research related to this paper. Section 3 describes the details of the new graph interaction
technique. Section 4 outlines the user study conducted to evaluate the new interaction
technique, with the results presented in Section 5 followed by a discussion of these
results in Section 6. Finally, the paper concludes with a discussion of future work.

2 Background

While readability of graph drawings has been a topic of research for decades, and there
is a wealth of papers on the evaluation of drawing quality, e.g. [7, 13], the research has
focused mainly on task based performance for diagrams of small to medium size. Sev-
eral well established quality criteria for graph layouts exist. The most prominent one is
the number of crossings, which was verified to be an impediment for the human under-
standing of small graphs in empirical experiments [13]. Further well established quality
criteria are angular resolution, edge length deviation, and stress. Recently, Huang et
al. [7] suggested that it is often better to make compromises between aesthetics, instead
of trying to satisfy one or two of them to the fullest. It has however not yet been in-
vestigated if the results obtained for small graphs can be extended to huge graphs or if
different quality criteria have to be employed.

Recently, Dwyer et al. [3] compared user-generated and automatic graph layouts,
where users were asked to optimize the layout for aesthetics and social network analysis
tasks. In their study, users that were asked to optimize a graph layout for an analysis task
used the term “untangling” to describe their process. In contrast the term “untangle”
here is not task related but used in a relatively informal sense: a user “untangles” a
graph drawing when they improve the layout, in the subjective opinion of the user. In



particular, we did not ask the participants of our user study to optimize any pre-specified
quality metric. Indeed, our long-term goals include discovery of users’ metrics.

Our new technique employs animation techniques found in modern computers games,
and many applications apply animation techniques to enrich the look and feel of the
user interface. Animations to the interface smooth the rough edges and sudden transi-
tions common in many current graphical interfaces, and strengthen the illusion of direct
manipulation that many interfaces strive to present [16]. Animation improves a user’s
understanding of the direct manipulation of the data by better portraying such concepts
as constraints, relationships, and connectivity. These are powerful cues for the direct
manipulation of large graph structures.

Ball, North, and Bowman [1] evaluated interaction techiques for large display visu-
alisations. They tracked physical navigation in 3D space via the participants head with
a VICON system. Their experiments found with increased size of the display, there was
more physical navigation. When combined with the reduced performance time on large
displays, they found a compelling suggestion that physical navigation was also more ef-
ficient. They also found that physical navigation was preferred over virtual navigation.

Peck, North, and Bowman [12] defined a new 3D interaction technique, multiscale
interaction, which associates the user’s scale of perception to their scale of interaction.
Multiscale interactions exploit the user’s physical navigation in front of a large display
to directly control the scale of interaction, while adjusting their scale of perception.
Overall, they found evidence that multiscale interaction is a natural behavior, and this
technique can be useful in interaction design for large high-resolution displays.

Skeletal animation (see, for example, [8]) is a well established technique in graph-
ics. An object is modelled as a mesh, with “bones” as links between ”joints”. Movement
of the mesh in between keyframes can be computed using methods of inverse kinemat-
ics [17]. The skeletal animation technique is mainly used to animate people and ani-
mals, but Merrick et al. [9, 10] investigate application to graph interaction. Their work,
however, is limited to very small graphs.

3 GION: Graph Interaction Operation for Nodes

To untangle a graph G, the user has to rearrange nodes by dragging them to new po-
sitions. Moving nodes one by one is time consuming. With thousands to millions of
nodes, the human resources required are too large both for untangling in practice and
for evaluation experiments like the one in this paper. Large graphs thus need interaction
methods for untangling that move more than one node at a time. The GION technique
uses ideas and off-the-shelf software from skeletal animation to simplify the process of
interacting with large graphs. More specifically, GION adapts a physics engine to move
many nodes at a time. GION treats the graph as a skeleton, where bones simulate edges,
and joints simulate nodes. However, the simple approach of representing every edge as
a bone and each node as a joint does not scale to handle large graphs. Thus large graphs
are clustered to enable the user to move large numbers of nodes at once. The physics
engine treats clusters as rigid bodies connected by joints. The effect of this approach is
that connected clusters move as a chain. This section describes the interaction technique
in detail and provides rationale for design choices.



Fig. 1. Untangling a graph layout on the tiled wall display.

3.1 Graph Clustering

Allowing the user to move larger chunks of the graph at a time can help to reduce this
effort in case these chunks are specified in a way that supports the user’s untangling
process. Graph clustering partitions the nodes of the graph into clusters, that is, disjoint
node sets, aiming to have high cohesion (that is, many intra-cluster edges), and low
coupling (that is, few inter-cluster edges).

Many different clustering algorithms are available. We use a fast and simple clus-
tering method based on random walks [2]. This algorithm aims to detect dense local
substructures using a random walk based graph traversal. Roughly speaking, random
walks tend to stay within a highly cohesive substructure with a high probability [2].
This algorithm allows to influence the number of clusters over parameter settings; this
property is helpful for tuning the interaction fidelity. As the cluster boundaries created
by the random walk approach can be somewhat fuzzy, we apply a Kernigan-Lin style
postprocessing technique [18] that flips the cluster affiliation of single nodes that are
connected more strongly to a different cluster than to the cluster they are affiliated with.

Clusters as Rigid Bodies: Each cluster in the graph is represented as a polygonal
rigid body. The polygon shape is calculated by taking the convex hull of the vertices
in the cluster, and then simplifying the polygon down to a maximum of eight vertices.
This simplification greatly improves the performance of the simulation at runtime. The
polygon is given physical properties that drive the simulation: 1) Damping reduces the
velocity of rigid bodies when in motion. 2) Density determines the mass of the poly-
gon, and thus its momentum when in motion. 3) Static Friction prevents rigid bodies
from moving unless a minimum threshold force is applied. This is important in limiting
the number of nodes that move in response to the movement of a node. 4) Collision
In most physics simulations, rigid bodies can collide. For our purposes, collisions are
disabled and bodies can pass through each other. Physics engines such as that provided
by Box2D allow specification of control parameters for the above properties; for GION,
we chose values for these parameters from experience.
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Fig. 2. (a) A section of a graph, and (b) physics system representation.

Edges, clustered edges, and bones: If there is at least one edge between two clus-
ters C1 and C2, then we say that C1 and C2 are linked. If two clusters are linked, then
we place an elastic bone between them; physically this acts to approximately maintain
a specified distance between the two clusters. The bone has a length that defines this
distance. In GION, the length of a bone is held constant during a single user operation,
but varies from one operation to the next, as explained below. The physics engine pro-
vides two parameters to define the elasticity of a bone: frequency and damping ratio. In
GION, the elasticity is held constant throughout.

3.2 User operations.

Users interact with the graph using the mouse to drag clusters into new positions. Each
GION user operation consists of three steps: 1) The user selects a node with a button-
down mouse event. 2) The user moves the mouse. Mouse movement is applied to the
physics simulation as a force that acts on the cluster containing the node selected by the
user. Using a force provides intuitive feedback about the connections from the selected
cluster; heavily connected clusters are more difficult (require more mouse movement)
to move than clusters with only a few connections. 3) The user releases (button-up) the
mouse. GION then re-sets the length of each bone to the distance between its endpoints.

GION differs significantly from previous skeletal animation methods in that the
length of each bone can vary from one user operation to the next. In a classical skeletal
animation (say of a human walking), bones have constant length; but GION introduces
some elasticity to the bone length. This provides more information to the user, as they
can more easily see how the graph is connected. However, we found through informal
pilot studies that users felt as though they did not have enough control over the layout of
the graph. Users became frustrated when clusters, connected by constant length bones,
would rebound back towards their initial positions.

To improve this behaviour, GION resets all bone lengths when the user releases the
mouse. The distance between two clusters at that point in time becomes the new defined
distance for the bone: thus the clusters stay in their positions when the user releases
the mouse. This improves the control that users have over the layout. It also gives the



users the ability to stretch out parts of the graph layout by quickly moving different
clusters to new positions. A future extension to this technique would allow users to
explicitly shrink bones, bringing clusters together. This extension was not included in
the evaluation.

We also make use of the clustering information to color the graph, based on the
degree of physics bodies. The clusters with the highest degree (most linked) are drawn
in red, and clusters with the lowest degree are colored green. The remaining clusters
are colored as a gradient from red to green based on their cohesion. Coloring the graph
in this way allows users to quickly identify which parts of the graph will be easiest to
move into more desirable locations.

4 Evaluation

We conducted a user study to evaluate the benefits of the physics-based graph inter-
action technique. We chose an untangling task for the experiment. Participants were
shown a series of graph layouts, and were asked to ‘untangle’ the layout to better show
the overall structure. Untangling was chosen as the task because it would require many
mouse operations to complete, and resulting graphs could be compared to the initial
layout. The experiment is a 2x2, within participant, repeated measures design. The con-
ditions tested were interaction mode: physics or normal, and coloring: colored or plain.
Participants used the GION technique for the physics condition. The normal interaction
allowed users to move nodes to new locations one cluster at a time, emulating move-
ment operations commonly used in graph layout software.

The hypotheses tested in the experiment are as follows:

H1 Physics interaction leads to lower stress than normal interaction.
H2 Physics interaction leads to fewer edge crossings than normal interaction.
H3 Colored graphs would have lower stress than the plain graphs.
H4 Colored graphs would have fewer edge crossings than the plain graphs.
H5 Physics interaction requires less mouse movement than normal interaction.
H6 Physics interaction requires fewer clicks than normal interaction.
H7 Physics interaction leads to lower stress than the starting layout.
H8 Physics interaction leads to fewer edge crossings than the starting layout.
H9 Physics interaction is preferred by users.

The following data were collected during each trial of the experiment: mouse move-
ment, in millimetres on the videowall, mouse clicks, and snapshots of the graph layout
(captured every five seconds). From the graph layout snapshots other properties of the
layout could be calculated and analysed. Participants were asked to fill out a question-
naire at the end of the user study session. Participants answered questions 1-4 for both
the physics and normal interaction conditions, and questions 5-6 for the color condition.
All questions were answered using a visual analogue scale. The participants were asked
to rank the interaction conditions in order of preference, and comment on strategies
used for untangling the graphs.

1. Moving graph clusters into new positions was {very easy - very hard}



2. Untangling the graphs was {very easy - very hard}
3. The interaction mode made the graphs {more understandable - less understandable}
4. With the results of untangling the graphs, I was {very happy - very unhappy}
5. When deciding which clusters to move first, the coloring made it {easy - hard}
6. Coloring the graph made untangling {fast - slow}

4.1 Graphs

We selected graphs that come from a real world application where graph visualization
is used for data analysis and the graph size and layout quality requirements pose a
challenge for state-of-the-art layout methods. Our graph set consists of RNA sequence
graphs that are used for the analysis of repetitive sequences in sequencing data [11].
They have been created by running pairwise alignment on genomic sequence reads,
and to represent reads as nodes and large overlaps between reads as edges. Eight graphs
were chosen for the experiment. Participants untangled all graphs, with the conditions
randomised for each graph.

We applied the Fruchterman-Reingold algorithm FR to obtain the initial layouts used
in the experiments. Our goal here was to start with a layout that did not reveal the overall
graph structure completely. A completely random layout might pose a too difficult chal-
lenge. Using a layout generated by FR allows the user to identify starting points for un-
tangling while leaving enough space for improvement based on individual preferences.
Graph properties are provided in Table 1. The set of graphs can be downloaded from
http://wcl.ml.unisa.edu.au/graph-untangling/graphs.zip. All graphs have
high local density, and a sparse global structure that allows to create layouts far from
hairballs that are showing the structure well.

Graph # nodes # edges density avg deg. clus. coeff. avg sh. path diameter
A 1159 6424 5.5 11.1 0.65 19.5 59
B 1748 13957 8 16 0.64 17.9 63
C 1785 20459 11.5 22.9 0.61 10.7 41
D 3010 41757 13.9 27.7 0.67 26.4 77
E 4924 52502 10.7 21.3 0.65 36 121
F 5452 118404 21.7 43.4 0.73 46.6 216
G 5953 186279 31.3 62.6 0.72 56.2 163
H 7885 427406 54.2 108.4 0.69 24.4 55

Table 1. Overview on the graph set used for the experiment

4.2 Experimental Procedure

Each participant completed the experiment in a single session. Participants were first
asked to complete a graph theory quiz. This quiz asked simple graph structure questions
and was designed to allow results from participants with different levels of knowledge
to be compared, and did not affect the rest of the experiment. Participants were given



instructions on how to interact with the system, and that they would have two minutes to
untangle each graph. Specifically, participants were shown an example starting layout
and untangled layout (shown in Fig. 3) and told “to untangle the graph. This involves
moving parts of the graph to new locations in order to make the underlying structure
of the graph clear”. Following this, the untangling trials began. The display provided
instructions informing the participant of the conditions of the next trial (for example,
physics colored). The participant clicked the mouse to begin the trial and the display
changed to show the initial graph layout. The participant then had two minutes to best
untangle the graph. After two minutes, the video wall went blank while the next trial
was loaded. After eight trials the participants were asked to complete the subjective
questionnaire and the session was concluded.

(a) (b) (c)

Fig. 3. (a) The starting layout for graph B. (b) Layout for graph B using stress minimization. (c)
Final layout created by one of the participants.

5 Results

Sixteen participants completed the experiment, recruited from staff and students from
the University of South Australia, and the general public. Participant ages ranged from
23 to 57, with a mean age of 33. Five of the participants were female, and all but
one of the participants were right handed. The mean score for the graph theory quiz
was 74.22% (std. dev 25.19). Pearson Correlation analysis was performed to see how
quiz score affected results. A significant correlation was found between quiz score and
change in edge crossings for the normal/color condition, r = −.505[−.876, .453], p <
0.05. Quiz results did not affect any other conditions. All other quantitative results were
analysed using a 2x2 repeated measures ANOVA.

5.1 Mouse Usage

There was a significant main effect on interaction mode, F(1,15) = 36.586, p < 0.001.
There was significantly less mouse travel in the physics condition compared to normal,
with 59294.661mm (SE 5001.180) of mouse travel for the physics condition compared
to 76227.881mm (SE 4153.657) for the normal condition. The graph coloring did not



produce a significant effect on mouse travel, and there was no significant interaction
between interaction mode and graph coloring.

There was a significant main effect on the interaction mode, F(1,15) = 6.279, p <
0.05. Participants made fewer mouse clicks for the normal condition than physics, with
mean mouse clicks of 38.563 (SE 3.235) for the normal condition compared to 43.109
(SE 3.036) for the physics condition.

There was also a significant main effect on the graph coloring, F(1,15)= 11.614, p<
0.01. Participants made significantly fewer mouse clicks for the plain condition than
colored, with mean mouse clicks of 39.125 (SE 2.685) for the plain condition com-
pared to 42.547 (SE 3.367) for the colored condition.

5.2 Graph Layout Analysis

Layouts were analysed for stress and edge crossings. The results presented here are
represented as a ratio of change in values compared to the starting values of the ini-
tial graph layout, i.e. Result = (EndValue−StartValue)/StartValue. Using a ratio of
change allows comparisons between graph layouts of different sizes, numbers of clus-
ters, and vastly different initial stress and edge crossing values. In all conditions, stress
was higher after participants interacted with the graph. Of the 128 trials conducted in
the experiment, only two resulted in lower stress values than the initial conditions. How-
ever, there was a significant main effect on interaction mode, F(1,15), p < 0.05. The
physics based interaction produced layouts with significantly less stress than the normal
interaction mode, with mean stress change of 22.884 (SE 2.772) for the physics con-
dition compared to 95.763 (SE 14.955) for the normal condition. Graph coloring did
not produce a significant effect on graph stress, and no significant interaction between
interaction mode and graph coloring was found. Edge crossings were also higher after
participants interacted with the graph. Sixteen of the 128 trials showed a reduction in
edge crossings.

There was a significant main effect on interaction mode, F(1,15), p < 0.05. The
physics based interaction produced layouts with significantly fewer edge crossings than
the normal interaction mode, with mean change in edge crossings of 0.578 (SE 0.087)
compared to 2.811 (SE 0.538) for the normal interaction mode. Graph coloring did not
significantly affect edge crossings, and no significant interaction between interaction
mode and graph coloring was found.

5.3 Questionnaire Results

The results of the questionnaire comparing the physics interaction to normal interaction
are summarised in Fig. 4. Significant results (p < .05) were found for questions 1,
3, and 4, with participants giving higher scores for the physics condition in all three
questions. Participants overwhelmingly preferred the physics interaction, with 87.5%
of participants choosing physics as the preferred mode. Participants also responded
favourably to the graph coloring. Results for Q5 were 71.69 (SD 18.095), and Q6 68.19
(SD 15.753).
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Fig. 4. Questionnaire Results for physics and normal interaction modes. Error bars show 95% CI

6 Discussion

The results of the user study show that the GION interaction technique is better in the
untangling task than existing interactive methods. Specifically, hypotheses H1, H2, H5,
and H9 were confirmed in the experiment. An interesting result is that users moved
the mouse less in the GION condition, but made more mouse clicks. This suggests
that participants spent more time fine-tuning the layout. Another unexpected result is
that while GION produced layouts with lower stress and fewer edge crossings than the
normal interaction, those values were worse than for the starting graph layouts. Using
human interaction to untangle a large graph raises the question of what actually makes
a good layout in this context. In particular, classical metrics like stress or edge crossings
do not take into account the dynamics of the process and the mental map that the user
creates during interaction. Intermediate layouts might not be good with respect to such
metrics, but the user’s interactive operations to create them can increase the users insight
in the graph structure, and their value may depend on the preceding untangling process.
Trying to measure such effects is however beyond the scope of this paper.

We deliberately restricted the user interface for the sake of a robust evaluation. For
example, participants were not able to zoom or pan the graph drawing. A more complete
system would also allow users to temporarily disable the physics engine in order to
precisely control a single cluster. Multiple levels of clustering would also improve the
technique, by allowing users to switch from coarse to fine grained interaction.

7 Implementation Details

Our video-wall consists of six NEC NP510W projectors each with a resolution of
1280x800 arranged in a 3x2 configuration. A camera based technique, as described
by Raskar et al. [15], is used for geometric calibration of the projectors and for pro-
ducing blending masks for smooth transitions between projectors. The computer used



in this work consists of 2x Quad Core Xeon processors, 12GB of RAM, and 2x Nvidia
Geforce GTX 780 GPUs.

The system presented in this paper consists of a custom built application written in
C++ with OpenGL for rendering. The physics simulation was developed using Box2D3,
an open source 2D physics library popular for game development. The Open Graph
Drawing Framework (OGDF)4 is used to provide graph data structures used by the ap-
plication, saving and loading graphs at runtime, as well as for layout metrics. Vertex
data is stored in an OpenGL Vertex Buffer Object (VBO). Edge data references the
VBO and is rendered using an Index array. This reduces the amount of data transferred
to the graphics card each frame and improves rendering performance by reducing the
number of draw calls needed. Further enhancements were needed to improve rendering
times on on a multi-projector display. A naive approach would simply involve rendering
the graph in its entirety for each projector. Instead, we use a deferred rendering tech-
nique. The entire display is first rendered to an off-screen Framebuffer Object (FBO).
Following this step, a portion of the FBO is rendered to each projector. This approach
scales much better as the number of projectors increases, as the cost of each projector
is just a single textured polygon.

8 Conclusion

In this paper we presented GION, a new interactive graph layout technique of large
graph structures. GION is based on a physics engine to provide smooth and under-
standable animations to update the graph layout while the user moves a cluster. The
results of a user study comparing GION with moving a single cluster at a time found
the use of physics engine produced graphs with less stress, fewer edge crossings, and
less mouse movement. Participants preferred the GION technique to moving a single
cluster during the experiment.

We applied two standard quality layout metrics: stress and crossings. With GION,
users constructed graph layouts that did not show significantly less stress or signifi-
cantly fewer edge crossings, in comparison with the Fruchterman-Reingold algorithm.
These results from our experiments lead us to question the validity of these two stan-
dard metrics for large graphs in the context of human layout improvement, and our work
raises the question as to what quality metrics should be applied instead. We conjecture
that measures like the precision of neighborhood preservation [5] will be better suited
in this context than standard metrics for small graphs.
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