Category Archives: UniSA

AUIC 2012 Roundup

So the Australasian User Interface Conference for 2012 has been and gone. The Wearable Computer Lab presented two full papers and two posters, of which I was an author of one :)

The papers we presented are listed below, and the publication page has been updated so you can get the PDFs. Cheers!

E. T. A. Maas, M. R. Marner, R. T. Smith, and B. H. Thomas, “Supporting Freeform Modelling in Spatial Augmented Reality Environments with a New Deformable Material,” in Proceedings of the 13th Australasian User Interface Conference, Melbourne, Victoria, Australia, 2012. (pdf) (video)

T. M. Simon, R. T. Smith, B. H. Thomas, G. S. Von Itzstein, M. Smith, J. Park, and J. Park, “Merging Tangible Buttons and Spatial Augmented Reality to Support Ubiquitous Prototype Designs,” in Proceedings of the 13th Australasian User Interface Conference, Melbourne, Victoria, Australia, 2012.

S. J. O’Malley, R. T. Smith, and B. H. Thomas, “Poster: Data Mining Office Behavioural Information from Simple Sensors,” in Proceedings of the 13th Australasian User Interface Conference, Melbourne, Victoria, Australia, 2012.

T. M. Simon and R. T. Smith, “Poster: Magnetic Substrate for use with Tangible Spatial Augmented Reality in Rapid Prototyping Workflows,” in Proceedings of the 13th Australasian User Interface Conference, Melbourne, Victoria, Australia, 2012.

adaptive-detail

New Publication: Adaptive Color Marker for SAR Environments

Hey Everyone

So right now I am at the IEEE Symposium on 3D User Interfaces in Singapore. We have a couple of publications which I’ll be posting over the next few days. First up is Adaptive Color Marker for SAR Environments. In a previous study we created interactive virtual control panels by projecting onto otherwise blank designs. We used a simple orange marker to track the position of the user’s finger. However, in a SAR environment, this approach suffers from several problems:

  • The tracking system can’t track the marker if we project the same colour as the marker.
  • Projecting onto the marker changes it’s appearance, causing tracking to fail.
  • Users could not tell when they were pressing virtual controls, because their finger occluded the projection.

We address these problems with an active colour marker. We use a colour sensor to detect what is being projected onto the marker, and change the colour of the marker to an opposite colour, so that tracking continues to work. In addition, we can use the active marker as a form of visual feedback. For example, we can change the colour to indicate a virtual button press.

I’ve added the publication to my publications page, and here’s the video of the marker in action.